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A dilute dispersion containing drops of one fluid dispersed in a second, immiscible 
fluid is considered. The drops are sufficiently small that inertia is negligible and that 
they remain spherical. Two drops of different size are in relative motion due to either 
Brownian diffusion or gravitational sedimentation. When the drops become close, 
they interact with each other owing to hydrodynamic disturbances and van der 
Waals attractions, and, under favourable conditions, they will collide with each 
other and coalesce. The rate at which two drops collide is predicted by solving the 
diffusion equation for Brownian coalescence, and by using a trajectory analysis to 
follow the relative motion of pairs of drops for gravity-induced coalescence. 

The emphasis of our analysis is on the effects of drop interactions on their collision 
rate, and these are described by the collision efficiency. Since the hydrodynamic 
resistance to the drop relative motion reduces with a decreasing ratio of the 
viscosities of the drop fluid and the surrounding fluid, the collision efficiency 
increases with decreasing viscosity ratio. A qualitative difference in the collision 
behaviour of viscous drops from that of rigid spheres is demonstrated ; finite collision 
rates for drops are predicted even in the absence of attractive forces, provided that 
drop deformation is negligible, whereas rigid particles with smooth surfaces will not 
come into contact in a fluid continuum unless an attractive force is present which is 
able to overcome the lubrication forces resisting the relative motion. Hydrodynamic 
interactions between two spherical drops are accounted for exactly by determining 
the two-sphere relative mobility functions from previous solutions for two drops 
moving along and normal to their line of centres. These solutions are based on the 
method of reflections for widely separated drops, lubrication theory for drops in near- 
contact, and bispherical coordinates for general separations. The hydrodynamic 
interactions have a greater effect on reducing the rate of gravity collisions than the 
rate of Brownian collisions. 

1. Introduction 
Drop collisions and coalescence play important roles in a variety of natural and 

industrial phenomena, such as raindrop growth, liquid-liquid extraction, and the 
processing of bimetallic composite materials exhibiting a liquid-phase miscibility 
gap. In  this paper, we predict collision rates for small drops in a dilute, statistically 
homogeneous dispersion. The drops are of different sizes and are in relative motion 
due to their different settling speeds induced by gravity or due to their random 
Brownian motion. It is assumed that the drops are sufficiently small (typically 
having diameters of approximately 100 pm, or less) that they remain spherical due 
to their interfacial tension and that inertia is small relative to viscous forces. When 

t To whom correspondence should be addressed. 



480 X .  Z h n g  and R .  H .  Davis 

two drops are within several radii of each other, hydrodynamic interactions resist 
their relative motion and cause them to flow around each other. If the drops become 
sufficiently close to one another, they exert an attractive van der M'aals force on each 
other which pulls them together. When the drops come into physical contact, they 
will coalesce into a single, larger drop due to the tendency of interfacial tension to 
minimize the surface area and surface energy of the contacted drops (Melik 1984). As 
a result of drop collisions and coalescence, the drop sizes in a dispersion will increase 
over time from the initial distribution. This change in the drop number density 
versus size distribution represents a macrophysical problem that is typically solved 
using population dynamics equations (Rogers & Davis 1990). These equations 
include collision kerdls which contain the collision rate between two drop size 
categories. The focus of the present paper is to provide this required information by 
solving the microphysical problem of two interacting drops in order to predict the 
collision rate, given the instantaneous number densities of the two size categories. 
The drops are allowed to have an arbitrary size ratio and an arbitrary viscosity ratio 
relative to the surrounding fluid. It is assumed that changes to the drop sizes (such 
as by dissolution or breakup) are negligible over the timescale of a collision. 

It is well known that lubrication forces prevent rigid particles with smooth 
surfaces from coming into physical contact in the absence of an attractive force 
which increases without bound as the separation between the surfaces decreases. In 
contrast, when drops approach each other in near contact, the mobility of their 
interfaces allows the fluid between them to be squeezed outward with much less 
resistance than for the rigid particle case. As discussed by Davis, Schonberg & 
Rallison (1989), this allows for non-zero collision rates of non-deforming drops, even 
in the absence of attractive forces. 

Relative motion, collisions, and coagulation of rigid spheres induced by gravity 
sedimentation or by Brownian diffusion have been investigated extensively. 
Smoluchowski (1917) made the first attempt to estimate the rate of coagulation in 
a dilute dispersion. In his classical model, the rigid spheres were assumed to move 
independently, without any hydrodynamic interactions or interparticle forces other 
than a sticking force upon contact. Accounting for the simultaneous effects of 
hydrodynamic interactions and interparticle attractive and repulsive forces, 
Spielman (1970) developed a theoretical model to predict the rate of coagulation for 
monodispersed rigid spheres subject to Brownian diffusion. Valioulis & List (1984) 
and Kim & Zukoski (1990) performed similar calculations for heterodispersed rigid 
spheres. These authors solved the steady-state diffusion equation describing the 
relative Brownian motion between two coagulating particles. For gravity-induced 
coagulation of rigid spheres with hydrodynamic and interparticle forces, theoretical 
models have been developed by Davis (1984) and by Melik & Fogler (1984) to predict 
the rate of coagulation using trajectory analyses, and by Wen & Batchelor (1984) 
using an asymptotic method for solving the convective-diffusion equation. All of 
these studies show that the hydrodynamic resistance to relative motion causes the 
collision rates to approach zero as the attractive forces become weak. 

There are fewer studies of the coalescence of fluid drops, presumably because of the 
more complex interactions which involve fluid flow both inside and outside of the 
drops and which include the possibility that the drops will deform as they collide. A 
notable exception is that Zinchenko (1982) has calculated the rate of gravity-induced 
coalescence of spherical drops of different sizes numerically using a trajectory 
analysis for pairs of drops, without considering the effects of interparticle forces. His 
results confirm that, in contrast to rigid spheres, drop collision is possible at finite 
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rates under the action of a finite external force only. He also showed how the rate of 
drop collisions decreases with an increasing ratio of the drop fluid viscosity and the 
surrounding fluid viscosity. 

Under conditions of low Reynolds numbers, the relative motion of two spherical 
drops may be decomposed into motions along and normal to their line of centres. 
Hetsroni & Haber (1978) used the method of reflections to describe the hydrodynamic 
interaction for widely separated drops in both configurations. More accurate image 
techniques, which are valid unless the separation distance is small relative to the 
radius of the smaller drop, have been developed by Fuentes, Kim & Jeffrey (1988, 
1989). Exact solutions - based on bispherical coordinate methods - have been 
developed by Haber, Hestroni & Solan (1973) and Rushton & Davies (1973) for 
axisymmetric motion along the line of centres, and by Zinchenko (1980) for 
asymmetric motion normal to the line of centres. Each of these solution methods 
yields an infinite series for the hydrodynamic force between the drops, which 
diverges when the distance between the drops tends to zero. Because coalescence 
phenomena depend critically on the near-contact interaction, these earlier solutions 
may be matched with the recent lubrication theory results of Davis et al. (1989), in 
which the nature of the hydrodynamic force resisting the near-contact relative 
motion of two spherical drops in the direction along their line of centres has been 
analysed in detail. 

The present work employs the above solutions for the hydrodynamic interactions 
of two spherical drops and calculates collision rates by extending the previous work 
by several authors for rigid particles and by Zinchenko (1982) for spherical drops. In 
$2, the effects of drop interactions on their relative motion are discussed. Previous 
solutions for the hydrodynamic interactions are collected and presented in useful 
forms as two-sphere relative mobility functions for drops. In $3, theoretical models 
are developed for Brownian coalescence and gravity-induced coalescence. An 
expression for the collision rate of Brownian drops is developed by analytically 
solving the diffusion equation, and a trajectory analysis is used to determine the 
collision rate of sedimenting drops. We do not consider the combined effects of 
gravity sedimentation and Brownian motion here, and so the analysis applies only 
in the limits of large PBclet numbers (gravity-dominated collisions) and small PBclet 
numbers (Brownian-dominated collisions). In $ 4, the results of the analytical and 
numerical computations for Brownian and gravity-induced collisions are presented 
and discussed. Most of the results are presented in dimensionless form, with an 
exception made for illustrative purposes for typical hydrosol dispersions. Concluding 
remarks are given in $5. 

2. Interactions between spherical drops 
2.1. Expression for the relative velocity of two drops 

We consider a dilute dispersion containing spherical drops of viscosity ,u’ and density 
p’ dispersed in an immiscible fluid of viscosity ,u and density p. Both fluids are 
Newtonian and isothermal, and it is assumed that there are no surfactants on the 
drop surfaces. For dilute dispersions, the probability of a third drop influencing the 
relative motion of two interacting drops is small, and so the analysis is restricted to 
binary interactions of drops with radii a, and a2, as shown in figure 1. For creeping 
flow, the external driving forces on each drop balance the hydrodynamic forces, and 
the velocity Kz of drop 1 relative to drop 2 is linearly related to the sum of the 
external forces and depends only on the relative position of the two drops. An 
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FIIXJEE 1. Schematic of the coordinate system used for the relative motion of two different- 
sized drops. 

expression for this relative velocity has been presented by Bachelor (1982) for rigid 
spheres, the essential details of which are modified here for spherical drops: 

-01;) --C(s)+ /-- H ( s )  -V(lnp12(r)), (2.1) [:: ( :) ] 
where r is the vector from the centre of drop 2 to the centre of drop 1 and I is the 
unit second-order tensor. 

The relative velocity due to gravity for two widely separated drops is given by the 
Hadamard-Rybczynski formula (Lamb 1945) : 

where P = $ / p  is the viscosity ratio, A =az/al is the radius ratio, g is the 
gravitational acceleration vector, and qo) is the settling velocity of an isolated drop. 
Similarly, the relative diffusivity due to Brownian motion for two widely separated 
drops is 

where k = 1.381 x erg/K is Boltzmann’s constant and T is the absolute 
temperature. 

The pair-distribution function, p12(r),  represents the probability that drop 1 is a t  
position r relative to drop 2, normalized such that p12 -+ 1 as T +  00. The interparticle 
force is described by the potential function G12(r), which is discussed in more detail 
in the following section. 

The relative mobility functions for motion along the line of centres (L and G) and 
motion normal to the line of centres (M and H) describe the effects of hydrodynamic 
interactions between the two drops. These functions depend on the size ratio of two 
drops, A, the viscosity ratio of the drop fluid and the surrounding fluid, $, and the 
dimensionless distance between the drops, s = 2r/(a1 +a2), and they are unch+nged 
when A is replaced with A-l .  Analytical expressions and numerical values of these 
functions for arbitrary values of A, $, and s are available in the literature and are 
discussed in $2.3 of this paper. 

The three terms on the right-hand side of (2.1) represent the contributions of 
gravity, interparticle forces, and Brownian diffusion to the drop relative motion, 
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respectively. Their relative importance may be measured by a dimensionless 
interparticle force parameter, Q12, and the PBclet number, Pe, as defined by Davis 
(1984): 

where Vg) = I V$$)l is the magnitude of the relative velocity of two widely separated 
drops, and A is the composite Hamaker constant, which is chosen as a measure of the 
strength of the interparticle forces (see $2.2). Note that the P6clet number is 
proportional to the fourth power of the drop radius. For typical hydrosols and 
aerosols, Pe % 1 when the radii of the drops are larger than about 2 pm, and so 
gravity sedimentation dominates over Brownian diffusion for such drops. Also, since 
Q12 = Pe kT/A,  and kT/A is typically of order unity for hydrosols and of order 10-l 
for aerosols (Davis 1984), the restriction that Pe is large will also require that Q12 be 
large, and the contribution of the interparticle forces to the drop relative motion is 
then small, except when the drops are very close to one another. On the other hand, 
Pe 4 1 for submicron drops, and so Brownian diffusion and interparticle forces 
dominate over gravity sedimentation for such very small drops. 

Carrying out the vector and tensor operations indicated by (2.1), and non- 
dimensionalizing the relative velocity with Vi\), gives 

u12 = -L(s) cos Be, +M(s)  sin Bee--G(s) 1 -e, dq512 
Q12 ds 

where u12 is the dimensionless relative velocity, e, and e, are unit vectors in the radial 
and tangential directions in a spherical polar coordinate system (see figure i), 
respectively, and q512 = dj12/A is the dimensionless interparticle potential scaled with 
the Hamaker constant. It is assumed in (2.4) that the interparticle force acts only 
along the line of centres. 

2.2. The interparticle force potential 
The most commonly used interparticle potential model is described by the DLVO 
theory attributed to Derjaguin & Landau (1941) and Verwey & Overbeek (1948), 
which assumes that the total interparticle potential is obtained by summing the 
individual attractive and repulsive contributions. The attractive van der Wads force 
is responsible for pulling nearby drops into contact and holding contacted drops 
together during coalescence, whereas the electrostatic repulsion gives rise to a 
repulsive energy barrier that may prevent the drops from becoming sufficiently close 
to be pulled into contact. Repulsive forces between drops are generally associated 
with the presence of surfactants on the drop interfaces. Since surfactants modify the 
mobility of the interfaces (by a variety of mechanisms to make them more rigid), 
their presence would violate an underlying restriction of this paper, that the external 
flow is able to drive an internal flow within the drops that is resisted only by their 
viscosity and not by tangential interfacial stresses. Thus, we consider here only clean 
interfaces for which the interparticle force is dominated by van der Waals attraction. 
In the colloid literature, the absence of repulsive forces is referred to as ‘rapid’ 
coagulation or coalescence. Limited results which include repulsive forces between 
drops are given by Zhang (1992). 

The van der Wads force between isolated drops was first calculated by Hamaker 
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(1937) using a pairwise additivity theory. For unequal spheres, the force potential as 
a function of the drop separation is then 

8A 8A (s2-4)(1 + 'I2 I}. (2.5) 
(s2-4)( 1 + A ) 2 + s 2 ( A  + 1)2 -4(1- [sz(l+ h)'-4( 1 - A )  

The Hamaker calculation neglects electromagnetic retardation and hence is valid 
only for separations between drops less than the London wavelength, A,, which is 
typically of order 0.1 pm. Schenkel & Kitchner (1960) made a detailed analysis of this 
retardation effect and derived empirical expressions by following best-fit app- 
roximations to their numerical integrations for 5 = 8-2 4 1. Their results are 
applicable only for equal-sized spheres; however, Ho & Higuchi (1968) used similar 
procedures to obtain the interactions between unequal-sized spheres : 

where 1 for p, < 1.0, Z@,)  = 1 + 1 .7692p, 

I 2.45 2.17 0.59 
Z ( p 0 )  = +7 for p, > 1.0, 

5p0 1 5 ~ :  25p0 
with p ,  = 2nLJv and v = 2A,/(a1+a2). The dimensionless parameter v is used to 
determine the degree of retardation. As v increases (i.e. the size of the drops 
decreases), the retardation is of increasing importance and reduces the attractive 
force. 

2.3. Mobility functions for the relative motion of two drops 

Considerable progress has been made in recent years on the hydrodynamic 
interactions between two spherical drops in axisymmetric motion along their line of 
centres and asymmetric motion normal to their line of centres. A far-field asymptotic 
solution for the resistance functions (which specify the hydrodynamic forces given 
the drop velocities) in power series 1/5 up to order l/ss has been derived using the 
method of reflections (Hetsroni & Haber 1978). From these, analytical expressions 
for the relative mobility functions L, G, M, and H can be deduced (contact the authors 
or see Zhang 1992 for details) : 

(2 +5$)(2 + 3,h) A(A3 + 1) 1 
-4  

(1 +PI2 

(2.10) 

(2.11) 

For two arbitrarily separated drops, more comprehensive solutions - based on the 
method of bispherical coordinates - have been developed by Haber et al. (1973) and 
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by Rushton & Davies (1973) for axisymmetric motion, and by Zinchenko (1980) for 
asymmetric motion. These solutions for the resistance functions allow for numerical 
calculation of the relative mobility functions for complete ranges of the parameters 
A and r; using infinite series which may be truncated when the desired convergence 
is reached. Unfortunately, these exact solutions require an increasingly large number 
of terms for convergence, and show that the hydrodynamic force opposing a 
prescribed relative motion increases without bound, as the distance between the 
drops becomes very small. The image solutions of Fuentes et al. (1988, 1989) are 
easier to use than the bispherical coordinate solutions - especially for transverse 
motion. Unfortunately, they are not sufficiently accurate a t  small separations for the 
purposes of our study of drop collisions. 

In order to overcome the convergence difficulties, and to elucidate the exact nature 
of the singularity as the drops become very close to one another, lubrication theory 
is used for analysing the near-contact interactions of two drops in axisymmetric 
motion. In the development of Davis et al. (1989), the dimensionless lubrication force 
between two spherical drops in near contact is shown to depend on a single 
dimensionless parameter, m = $-l(a/h0)i, where a = a, az/(al +a,) is the reduced 
radius of the two drops and h, = ~-(a,+a,) is the closest separation between two 
drop surfaces. This parameter describes the mobility of the interfaces : when m 4 1, 
the drops behave as rigid spheres, whereas when m 9 1, the drops have fully mobile 
interfaces and offer relatively little resistance to the drop relative motion. Note that 
the interface mobility, m, is not a property of the interfaces themselves but instead 
represents the viscous resistance of the fluid inside the drops to the flow exerted on 
their interfaces by the external fluid as it is squeezed out of the gap between the 
drops. Using this interface mobility, the lubrication forces acting on drops in the 
direction along their line of centres can be simply expressed as 

(2.12) 

where V,, is the component of K2 in the direction along the line of centres, andf(m) 
is a dimensionless function which is approximated by Davis et al. (1989) using the 
following PadB-type expression : 

V 
-&,l = = G T C , U U ~ ~ ~ ( ~ ) ,  

h0 

1 + 0.402m 
f (m)  = 1 + 1.711m+0.461m2 

(2.13) 

Note that the lubrication force for drops with mobile interfaces (m % 1) is inversely 
proportional to (h,/a)i, indicating that spherical drops can come into contact in a 
finite time under the action ofa fine force, in contrast to that for immobile interfaces 
(m < 1) for which the lubrication force is inversely proportional to h,/a. This 
lubrication force dominates the hydrodynamic resistance unless the drop viscosity is 
very small (p < O(h,/a)i), in which case the fluid slips out of the gap with little 
resistance. 

The primary task remaining for the drop relative motion along the line of centres 
is to determine the functions L and G for near-contact drops using the results 
described above. To do this, we consider two unequal drops which are nearly 
touching and which move together as a pair with velocity Up due to gravity acting 
along their line of centres. Superimposed on this is a small relative velocity of the 
larger drop approaching the smaller one. A force balance on each drop yields 

Fg,i  + F d d  +F,,, = 09 (2.14) 
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A B  0 0.1 0.5 1.0 2.0 5.0 10 20 100 1 os 
0.15 L, - 

c, 0.642 
M, 0.555 
M I  0.976 

0.25 L, - 

c, 0.644 
Mo 0.578 
MI 0.441 

C, 0.651 
M, 0.606 
M, 0.222 

C, 0.656 
M ,  0.619 
M ,  0.159 

0.5 L, - 

0.9 L, - 

0.660 
0.668 
0.519 
1.136 

0.696 
0.668 
0.545 
0.500 

0.786 
0.669 
0.579 
0.261 

0.835 
0.666 
0.594 
0.178 

0.657 0.644 
0.729 0.759 
0.424 0.357 
1.446 1.558 

0.706 0.691 
0.718 0.731 
0.460 0.401 
0.523 0.563 

0.817 0.823 
0.696 0.669 
0.508 0.458 
0.274 0.330 

0.880 0.898 
0.658 0.579 
0.528 0.482 
0.233 0.282 

0.597 
0.789 
0.287 
1.611 

0.658 
0.722 
0.338 
0.813 

0.810 
0.567 
0.407 
0.416 

0.899 
0.352 
0.436 
0.350 

0.507 
1.342 
0.209 
2.570 

0.585 
1.218 
0.268 
1.385 

0.766 
0.872 
0.349 
0.977 

0.874 
0.340 
0.385 
0.559 

0.438 0.379 

0.167 0.136 
3.435 7.370 

0.527 0.484 

- - 

0.228 0.197 
2.350 5.073 

0.730 0.698 

0.316 0.290 
1.417 3.493 

0.848 0.824 

0.356 0.334 
0.996 2.085 

0.309 

0.096 
32.771 

0.421 

- 

0.153 
24.166 

0.656 

0.251 
16.833 

0.791 

0.301 
9.665 

0.280 

0.079 
52.835 

0.398 

- 

0.129 
45.688 

0.639 

0.228 
38.596 

0.777 

0.281 
32.017 

TABLE 1. Values of the parameters L,, C,, M,, and M ,  that appear in the near-field expressions 
for the relative mobility functions. 

where FB,( is the gravity force acting on the drop i, which can be described by the 
Hadamard-Rybczynski result : 

(2.15) 

Fd,* is the drag force exerted on the drop i by the surrounding fluid, and is defined 
as the total hydrodynamic force minus the lubrication force. According to the 
analysis of Reed & Morrison (1974) for two touching drops, it can be expressed as: 

3,.4+2 Fd,t = -67cpa U -pt, 
p3,.4+3 

(2.16) 

where ps is a correction factor to the Hadamard-Rybczynski formula for drop i to 
account for the presence of the second drop. 

Equations (2.14)-(2.16) for i = 1 and i = 2 may be solved for the pair velocity Up 
and the lubrication force, Fl,l = -Fl,2. Using the latter in (2.1) and (2.12) yields the 
near-field asymptotic solution for L ,  after some algebra : 

The factors B1 and p2, which depend on h and b, were calculated by the method of 
Reed & Morrison (1974). The results for the entire coefficient on the right-hand side 
of (2.17), 

3b+2 ( 1 + ~ ) 3  L, = - 
3&+34A2(h2-1) 

are given in table 1. 
The derivation of the asymptotic solution for G for two near-contact drops is 
relatively simple because this function describes the effect of equal but opposite 
external forces exerted on the two drops (such as the interparticle force, V(a12),  or 
the thermodynamic force, kTV (lnp12(r)). When the drops are close to one another 
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([+ 0) ,  the lubrication force dominates the hydrodynamic force and directly balances 
the external force on each of the drops. Using (2.12) in (2.1) then yields the near-field 
solution for G: 

2+3,A(1+A)2 f G( f )  = --- 
3+3,A 2A f ( m ) '  

(2.18) 

As discussed by Davis et al. (1989), the lubrication force in the near-contact region 
does not dominate the remaining hydrodynamic force around the drops when the 
viscosity ratio is very small. Instead, the functions L and G may be determined by 
examining the bispherical-coordinate solution in the limit as the drops become close. 
From the arguments by Zinchenko (1978, 1982) for the asymptotic, near-field 
expansions of the resistance functions, it may be shown that the limit f Q 1 with 

and 

(2.19) 

(2.20) 

where A represents the asymptotic solution for the resistance function and is 
expressed by Zinchenko (1978, 1982) as 

C, is a parameter of order unity which depends on A and 1; ; typical values are given 
in table 1. Although (2.19) and (2.20) are restricted to drops which have sufficiently 
mobile interfaces, that is m 9 1, it is particularly useful for drops of small viscosity 
for which 6 is comparable to or smaller than (h,/a)i and for which (2.17) and (2.18) 
are then invalid. 

No asymptotic solution for hydrodynamic interactions between two drops in near- 
contact relative motion normal to their line of centres is available. However, from 
the numerical calculations of Zinchenko (1980) and Fuentes et al. (1989), it is 
expected that the mobility function, M, for two viscous drops with mobile interfaces 
has no singularity and that the lubrication force does not make a substantial 
contribution to the hydrodynamic interactions between two drops moving in near- 
contact normal to their line of centres. Thus, a simple expansion for [ 4 1 gives 

WE) =MO+M,f+o(F), (2.21) 

where M, and Ml are parameters, given in table 1, depending on ,A and A which we 
have determined approximately by fitting the exact solution for M using the method 
of least squares. These results for drops are in contrast to those for rigid spheres 
which show a logarithmic singularity for near-contact transverse motion. Similar 
results for the relative mobility function H may be obtained, but these are not 
discussed here because they are not needed for the calculations described in this 
paper. 

Typical results of the asymptotic solutions for L, G, and M as functions of the 
dimensionless distance between two drop surfaces, f = 8-2, for widely separated 
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lo-' 1 0 0  10' 

5 
RQURE 2. The relative mobility function L for axisymmetric motion of two spherical drops as a 
function of the dimensionless distance between drop surfaces for A = 0.5, with different $. The solid 
lines are from the exact solution; the dashed lines are from the far-field solution given by (2.8). 

lo-' 100 10' 
5 

FIQURE 3. The relative mobility function 0 for axisymmetric motion of two spherical drops as a 
function of the dimensionless distance between drop surfaces for A = 0.5, with different 1;. The solid 
lines are from the exact solution; the dashed lines are from the far-field solution given by (2.9). 

drops ((2.8), (2.9), and (2.10)) and for near-contact drops ((2.17), (2.18), and (2.21)) 
are plotted as dashed lines in figures 2 4  and figures 5-7, respectively, for h = 0.5, 
and a variety of viscosity ratios. For comparison, the corresponding exact solutions 
using the methods of bispherical coordinates are also shown in these figures as solid 
lines. We calculated the latter numerically in a high-precision VAX computer 
system, using the solution of Haber et al. (1973) for motion along the line of centres 
and the solution of Zinchenko (1980) for motion normal to the line of centres. Details 
of these calculations may be obtained from the authors or from Zhang (1992). 

As expected, the asymptotic solutions are in very good agreement with the exact 
ones within certain ranges of the drop separation. The far-field expansions are 
accurate to within a few percent for separations as small as one drop radius for 
motion along the line of centres (L and G), and for even smaller separations for 
motion normal to the line of centres (M). In  fact, the far-field expansions for 1M may 
be used for ,A < 1 for all separations, with an error of less than 1 %. The near-field 
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10-6 

0 
10-2 lo-' 100 

5 
FIQURE 4. The relative mobility function M for transverse motion of two spherical drops as a 
function of the dimensionless distance between drop surfaces for A = 0.5, with different $. The solid 
lines are from the exact solution; the dashed lines are from the far-field solution given by (2.10). 

I ' ' " * " ' I  ' ' - r ' - s l l  ' ' " ' I '  

expansions are accurate to within a few percent for dimensionless separations of 
6 ,< O( For drops with low viscosity ratios (,ii < l), the near-field solutions given 
by (2.19) and (2.20) for L and G, respectively, are used instead of (2.17) and (2.18). 
The results are essentially identical to the exact solution for all 6 < O(l0-l). 

Of particular interest is the behaviour of the mobility functions for the drops with 
high viscosity ratios. When the drops are very close together (6 Q l), the mobility 
functions depend strongly on the viscosity ratio. In contrast, the mobility functions 
for large separations are independent of the viscosity ratio (provided that it is much 
larger than unity). This is because highly viscous drops behave as rigid spheres with 
immobile interfaces when they are not close together. It is only when they approach 
each other closely that their interfaces become mobile and the fluid being squeezed 
out from between them is able to exert a sufficient tangential stress to drive a flow 
within the drop phase, thereby influencing the relative mobility functions. 
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3. Expressions for the drop collision rate 
We consider here a dispersion with a distribution of drop sizes, and seek to predict 

the average rate of collisions between drops of size category 1 with those of size 
category 2 a t  a given time. The rate at  which the drops of radius a, collide with the 
drops of radius a2 per unit volume is equal to the flux of pairs into the contact surface 
r = a, + a2 and is expressed in terms of the pair-distribution function p12(r)  and the 
drop relative velocity K2 by 

where n = r/r is the outward unit normal to the spherical surface represented by 
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r = a, + a,, and n, and n, are the number of drops at  the given time in the size 
categories characterized by radius a, and radius a,, respectively, per unit volume of 
the dispersion. 

For a dilute dispersion, the pair-distribution function is governed by a quasi- 
steady mass conservation equation for regions of space outside the contact surface : 

(3.2) 
As the colliding drops come into contact, they are assumed to coalesce, and So p,, = 
0 for r = a,+a,. Provided that all of the dropdrop encounters originate at wide 
separations in a homogeneous dispersion, the other boundary condition is p, ,  + 1 as 
r+m. 

3.1. The rate of Brownian collisions 
For drops which are submicron, have densities closely matched with the surrounding 
fluid, and/or are suspended under microgravity conditions, both P e  and Q,, are small 
compared to unity. In  this case, gravity sedimentation is small compared to motion 
induced by interparticle forces and Brownian diffusion. Carrying out the vector and 
tensor operations indicated by (2.1), and noting that the @,, and p, ,  depend on r 
only owing to the spherical symmetry of Brownian diffusion, then yields: 

v. (P12 K 2 )  = 0. 

It is straightforward to combine this with (3.2) and then integrate twice to obtain the 
pair-distribution function : 

Also, the col 

= exp(- 

J al+al r"Cf 

(3.4) 

lision rate per unit volume is found by integrating (3.2) only once and 
then using (3.1) to give 

4nn, n2 Dit) 
J12 = c" exp (@, , /kT)  ~~ * 

(3.5) 

J a,+a, r2G 

If the drops are assumed to move independently, that is, without any 
hydrodynamic interactions (G = 1) or interparticle forces (al2 = 0), other than a 
sticking force on contact, the collision rate is that obtained by Smoluchowski (1917) : 

(3-6) 
We define the collision efficiency, El ,  = J,,/J!\), aa the ratio of the predicted collision 
rate with hydrodynamic and interparticle interactions to that obtained in their 
absence. Using the dimensionless centre-to-centre distance, s = 2r/(a, +a,), this is 

Jg) = 4nn, n,Dit)(a, +a,). 

then 

Note that the inverse of the collision efficiency is often called the 'stability ratio' by 
colloid scientists. 

Of considerable interest is the influence of the viscosity ratio on the collision 
efficiency. For viscous drops, the relative mobility function G for near-contact 
relative motion is inversely proportional to the square root of the distance between 
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the drops when the interface mobility is large. It leads to the integration in (3.7) 
being fmite instead of being infinite as for rigid spheres. Furthermore, since G 
decreases with increasing viscosity ratio (see figures 3 and 6), (3.7) indicates that the 
collision efficiency will decrease monotonically as the ratio of the drop-phase 
viscosity to the suspending-phase viscosity is increased. On the other hand, 
comparing the effects of the hydrodynamic interactions and the interparticle forces, 
which are represented by G and GI,, respectively, on El ,  through (3.7), it is seen that 
the hydrodynamic interactions appear in a pre-exponential factor and therefore are 
subordinate, for moderate values of AIkT,  to the interparticle forces, which appear 
in the argument of the exponential. 

3.2. The rate of gravity-induced collisions 
For supramicron drops having Pe 9 1, Brownian motion is negligible relative to 
gravity sedimentation. In this case, the relative motion of two drops of different size 
is deterministic, and the collision rate may then be found using a trajectory analysis. 
Using (3.2) and the divergence theorem, the integral in (3.1) is taken over the surface 
which encloses the volume occupied by all trajectories that originate at r = co and 
terminate with the drops coming into contact. The cross-section of this volume at 
r = CQ is a circle of radius y,* due to the symmetry of gravitational motion, and since 
p, ,  = 1 and K, = FA) at r = 00, the collision rate is then 

(3.8) 
For rectilinear approach without interactions up to the instant of contact, as in 
Smoluchowski's model, y,* = a, +a,, and the collision rate becomes 

(3.9) 
The collision efficiency is therefore 

J,, = n, n, F'!'?$Y,*~. 

J!?j = n1 n, V&(a, + a2),. 

(3.10) 

Our problem to determine the collision rate is now reduced to one of determining 
the critical impact parameter, y,*, which is equal to the largest horizontal 
displacement from the vertical axis of symmetry (g being in the vertical direction, as 
shown in figure 1) possible for two widely separated drops that eventually will 
collide. It is determined by solving the trajectory equation to follow this 'limiting' 
trajectory. 

For Pe % 1, the dimensionless relative velocity u,, is given by (2.4) with the last 
term vanishing : 

(3.11) 

The interparticle force term is retained, even if QI2 9 1, because the interparticle 
forces may become large when the drops are very close together. By decomposing the 
relative velocity given by (3.11) into the components along and normal to the line of 
centres (i.e. in the radial and tangential directions) and dividing the radial 
component by the tangential component, we obtain the trajectory equation : 

u,, = -L(s) cos 8 e, +M(s)  sin 8 e, - -- Q(s) w 1 2  
QI2 ds er' 

(3.12) 

As mentioned earlier, the interface mobility of spherical drops allows collision to  
occur in finite time under the action of a finite force. Considering this situation with 
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s = 2  

FIQIJRE 8. Schematic for a binary collision between different-sized drops under the action of 
gravitational forces only : (a) the limiting trajectory ; (b) a trajectory terminating with contact; (c) 
a trajectory in which the drops move paat one another and separate. 

the interparticle forces neglected, that is, when the second term in the numerator on 
the right-hand side of (3.12) is zero, the trajectory equation is reduced to 

ds -L(s )cos~  - 
d8 = M(S)  sin 8 

(3.13) 

Separating and integrating (3.13) subject to an initial condition s = so and 8 = 8, at 
the beginning of the trajectory yields : 

sin 8 = sin 8, exp ( j y d s ) -  
(3.14) 

By defining yo = 2y:/(a, + a,) as the dimensionless initial horizontal distance 
between the two drops, so that yo = .s0sin8,, and then letting so+ 00 as the widely 
separated initial condition, (3.14) may be rewritten as 

(3.15) 

This equation may be solved for the relative trajectory, 8(s), which depends on a 
single parameter, yo, known as the dimensionless impact parameter. 

The dimensionless critical impact parameter, yc = 2y,*/(a, +a,), is the value of yo 
that leads to the two drops just grazing each other, as shown in figure 8, and their 
relative trajectory is then defined as the limiting trajectory. For yo < ye, the drops 
collide; for yo > ycr the drops move past one another without colliding. In the 
absence of interparticle forces, the limiting trajectory is one with the final condition 
s = 2 (contact) when t9 = in, since by symmetry the point of closest approach occurs 
at 8 = in. Using the final condition in (3.15) yields 

" M - L  
Y C  = 2exP( - I, r d s ) .  

The collision efficiency defined by (3.10) is then 

(3.16) 

(3.17) 
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(a) 

t i  
FIGURE 9. Schematic for a binary collision between different-sized drops under the action of 
gravitational forces and van der Waals attraction: (a) the limiting trajectory; ( b )  a trajectory 
terminating with contact ; (c) a trajectory in which the drop moves past one another and separate. 

With interparticle forces considered, the trajectory equation can no longer be 
solved analytically for an explicit formula for the dimensionless critical impact 
parameter, ye, and hence the collision efficiency. Instead, the determination of the 
collision efficiency has to be performed by integrating (3.12) numerically along the 
limiting trajectory from the infinite separation of two drops to the termination point. 
Since the attractive force pulling the drops together increases with decreasing 
separation, whereas the gravitational force pulling them apart increases with 
decreasing cos8, the termination point of the limiting trajectory occurs where the 
larger drop is directly below the smaller drop (8 = x) and the van der Waals 
attraction just balances the gravitational force. This balance occurs when 6 = 8, 
defined such that L -  (GlQ,,) (d$,,/ds) = 0. As shown in figure 9, any relative 
trajectories which are inside this limiting trajectory end with the drops colliding due 
to the van der Waals attraction, whereas those outside the limiting trajectory end 
with the drops separating. Note that, in the absence of inertia, the trajectories do not 
cross. 

The dimensionless critical impact parameter may be determined by integrating 
(3.12) backwards along the limiting trajectory from the termination point 0 = x and 
6 = 8, to a position s = sf and 8 = Of, beyond which the van der Waals forces are 
negligible. This numerical solution may be matched with the solution in the outer 
region (s > sf). Since van der Waals forces are negligible in this outer region, the 
solution for the limiting trajectory therefore is given by (3.15) with yo = ye. Setting 
s = sp and 8 = Or as the matching condition reveals that 

(3.18) 

4. Results and discussion 
4.1. Brownian collisions without interparticle fores 

With interparticle forces neglected (al2 = 0), equation (3.7) for the collision efficiency 
of Brownian drops reduces to 
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FIGURE 10. The collision efficiency for Brownian drops as a function of the viscosity ratio for 
various size ratios without interparticle forces. 

The calculation of El ,  can be performed by numerical integration. However, the 
integration given by (4.1) has a singularity for 6 = 5-2+0. This singularity was 
subtracted off and then evaluated analytically using (2.13) and (2.18) for finite C;. For 
bubbles ( C ; + O ) ,  the singularity as [ + O  is sufficiently weak that this was not 
required. The tail integral for s+ co was also evaluated analytically using (2.9) for 
s > 7.0. The remainder of the integral was performed numerically using Simpson's 
rule together with the series solution of Haber et al. (1973) in order to calculate the 
mobility function G. The number of integration intervals was set to achieve 
convergence within 0.1 %, and a successively decreasing interval was used to account 
for the more rapid variation of the integrand with decreasing drop separation. 

The results for El, as a function of ,i are shown in figure 10 for h = 0.05,0.15,0.25, 
0.5, and 1.0. The results are unchanged when A is replaced by h-l. As expected, El, 
decreases as 1; increases because this corresponds to decreasing the interface mobility 
and internal drop flow, which leads to a higher hydrodynamic resistance to close 
approach. In  the limit as ,i+ co, corresponding to that of rigid spheres, El, + O ,  
although this limit is approached only slowly. Figure 11 shows the results for El, as 
a function of A for C; = 0, 0.1, 1.0, 10, 100, and 1000. As h decreases from unity, El, 
increases and it tends to unity when h tends to zero. One reason for this is that when 
A decreases, the influence of the smaller drop on the Brownian diffusion of the larger 
one is decreased. Of more importance is that the contribution of the smaller drop to 
the relative Brownian diffusivity increases as h decreases. As h+O, the hyd- 
rodynamic interactions become important only within an increasingly small 
boundary layer around the larger drop, and so El,+- 1.0 as h+O. 

4.2. Brownian collisions with van der Waals forces 

The collision efficiency of drops subject to Brownian diffusion and accounting both 
for hydrodynamic interactions, which are described by the relative mobility function 
a, and for unretarded attractive van der Waals forces, whose potentials are 
expressed by (2.5), was determined by performing the integration in (3.7). An 
analytical integration for small 6 is not required because the presence of the van der 
Waals attraction, which has the opposite effect to that of the hydrodynamic 
interactions, removes the singularity in the integrand. Also, the tail portion of the 
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FIQURE 11. The collision efficiency for Brownian drops as a function of the size ratio for various 
viscosity ratios without interparticle forces. 
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FIQURE 12. The collision efficiency for Brownian drops a a function of the Hamaker group for 
A = 0.05 and various viscosity ratios with unretarded van der Waals attraction. 

integral for large separations is unchanged because the van der Waals potential 
decays as O ( @ )  for large separations and therefore is of smaller order than the far- 
field hydrodynamic interactions. In addition to A and ji, the collision efficiency 
depends upon AI6kT. This dimensionless parameter is called the Hamaker group, 
and it provides a measure of the strength of the van der Wads forces relative to the 
Brownian motion. It is typically of order unity, or less. 

The effects of van der Waals attractions on the collision efficiency of Brownian 
drops are shown as a function of A/6kT in figures 12-14 for different viscosity ratios, 
with A = 0.05,0.5, and 1.0, respectively. As expected, the attractive force increases 
the collision rate. In  fact, the collision efficiency becomes larger than unity for 
A/6kT % 1, but attractive forces of this magnitude are not usually encountered in 
practice. Moreover, the van der Waals attraction plays an increasingly important 
role as ji increases. In particular, the collision efficiency for ji % 1 is independent of 
,4 at large values of AIGkT, but not for small values of AI6kT. This is because van 
der Waals forces are too weak when AI6kT < 1 to become important until after the 
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FIGURE 13. The collision efficiency for Brownian drops as a function of the Hamaker group for 
A = 0.5 and various viscosity ratios with unretarded van der Waals attraction. 
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FIGURE 14. The collision efficiency for Brownian drops as a function of the Hamaker group for 
A = 1.0 and various viscosity ratios with unretarded van der Wads attraction. The solid circles are 
the calculations by Spielman (1970) for rigid spheres. 

viscous drops have become sufficiently close that the squeeze flow in the gap between 
them causes their interfaces to become mobile so that the internal flow and viscosity 
effect the collision process. In  contrast, if both and A / 6 k T  are large, then the drops 
are pulled into contact rapidly by the attractive forces before they approach within 
this range and so the interface mobility and internal flow do not affect the 
process -the drops behave aa rigid spheres. In this limit, our results agree to within 
0.2% with the earlier calculations of Spielman (1970), which are shown as filled 
circles in figure 14 for h = 1 and ,A = m. 

Electromagnetic retardation may be included in the analysis simply by using (2 .6 )  
in place of (2 .5 )  to assess the significance of the retardation. Numerical results of 
Zhang (1992) for El ,  with retarded van der Waals attraction show no qualitative 
change in the effects of van der Wads attractions on the collision efficiency. 
Retardation has little effect for small A / k T ,  because then the van der Wads forces 
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FIGURE 15. The collision efficiency for gravity sedimentation of drops as a function of the 
viscosity ratio for various size ratios without interparticle forces. 

only become significant when the spheres are very close together. For v = 0.5 and 
A/6kT = 0.01, the reduction in El ,  due to retardation is less than lo%, whereas it 
is as much as 25 % for A/6kT = 1 .O. 

4.3. Gravity-induced collisions without interparticle forces 
Neglecting the effects of the interparticle forces, the collision efficiency of sedimenting 
drops is given by (3.17) and involves an integral of the relative mobility functions. 
This integral also has a singularity near s = 2 which was subtracted off and 
integrated analytically using (2.17) and (2.21) for finite 1;. Equations (2.8) and (2.10) 
were used to evaluate the tail integral analytically for s > 7.0. The remainder of the 
integral was evaluated numerically, with an accuracy of 0.1%, using the series 
expansions of Haber et al. (1973) and Zinchenko (1980) to determine the mobility 
functions L and M, respectively. 

The results for El, as a function of ,h are shown in figure 15 for different A. These 
results show the expected result that the collision efficiency decreases as ,h increases, 
with El ,  --f 0 only slowly as ,h + 00, as is the case for Brownian collisions. However, 
the collision efficiencies for gravity collisions are one or two orders-of-magnitude 
smaller than those for Brownian collisions. Figure 16 shows the results for El ,  
changing with A, for several different II;. The results for the collision efficiencies 
predicted by Zinchenko (1982) are presented as solid circles for a comparison. There 
is very good agreement between the present results and Zinchenko's, with the 
relative difference between them being smaller than 3%. In contrast to the case of 
Brownian collisions, the collision efficiency decreases as A decreases. This is because 
a smaller drop tends to follow the streamlines of the flow around a larger one, and 
collision does not occur unless the smaller drop is originally on a streamline which is 
very close to the vertical axis of symmetry. This is also one reason for the collision 
efficiencies of gravity-induced motion being much smaller than those for Brownian 
motion. Note from figure 16 that the collision eficiency approaches a finite value as 
the drops become equi-sized (A --f 1). However, the collision rate goes to zero in this 
limit because the relative velocity of the two drops approaches zero. By using (2.2) 
and (3.9), the collision rate may be non-dimensionalized with a quantity not 
involving the size ratio: Jl , / (n ,  n2 Uio)nal) = E12(l --A2)(1 + A ) 2 .  This quantity is 
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FIGURE 16. The collision efficiency for gravity sedimentation of drops aa a function of the size ratio 
for various viscosity ratios without interparticle forces. The solid circles are the previous results of 
Zinchenko (1982). 

0.3 - 
N h 

< + - w 

$ 0.2 - 
I - Y 

6 
0.1 - 

0.3 - 
N h 

< + - w 

$ 0.2 - 
I - Y 

6 
0.1 - 

0 0.1 012 0:3 014 015 0:6 0:7 018 019 1.0 
A 

FIGURE 17. The dimensionless collision rate, J,,/(n, n,U:)nai) = &(l -As)( l  for gravity 
sedimentation of drops aa a function of the size ratio for various viscosity ratios without 
interparticle forces. 

shown in figure 17. The collision rate is small for small size ratios because of the 
reduced collision cross-section and collision efficiency (as discussed previously), 
achieves a maximum at moderate size ratio, and then decreases as the size ratio 
approaches unity becauae of the reduced relative velocity. 

4.4. Gravity-induced collisions with van der Wads attraction 
In  order to avoid numerical difficulties, (3.12) for the trajectories with gravity and 
van der Waals forces was integrated from 8, to 8 = IC, forward rather than backward, 
using the exact solutione for L, G and M and the fourth-order Runge-Kutta method. 
By systematically varying the matching angle, Of, a limiting value, from which the 
drop flows along the limiting trajectory and finally arrives at the termination point, 
was determined. The matching separation, spr was set to be 9.0 in order to ensure that 
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FIQURE 18. The collision efficiency for gravity sedimentation of drops aa a function of the 
interparticle force parameter for A = 0.25 and various viscosity ratios with unretarded van der 
Wads attractions. The solid circles are the rigid-sphere results of Davis (1984). 
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FIQURE 19. The collision efficiency for gravity sedimentation of drops as a function of the 
interparticle force parameter for A = 0.5 and various viscosity ratios with unretarded van der 
Waals attractions. The solid circles are the rigid-sphere results of Davis (1984). 

the van der Wads forces were negligible and that the far-field asymptotic solutions 
for L, 0, and M applied beyond this point. Once the limiting condition, Of, was found, 
the collision efficiency was determined from (3.18). 

Typical results for the collision efficiency as a function of the parameter Q,, are 
shown in figures 18-20 for h = 0.25,0.5, and 0.9, respectively, with various ,h, where 
the corresponding results of Davis (1984) for rigid spheres are shown as solid circles. 
In the limit of ,h --f 00, there is excellent agreement between our new results and those 
of Davis (1984). As expected, the collision efficiency increases with increasing values 
of the Hamaker constant. The collision rate is more sensitive to the van der Waals 
attraction for drops with high viscosities relative to the surrounding fluid than for 
drops with moderate or low viscosities. This is because drops with high viscosities 
offer considerable resistance to near-contact relative motion, which must be 
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FIQURE 20. The collision efficiency for gravity sedimentation of drops aa a function of the 
interparticle force parameter for A = 0.90 and various viscosity. ratios with unretarded van der 
Waals attractions. The solid circles are the rigid-sphere results of Davis (1984). 
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FIGURE 21. The collision efficiency for gravity-induced sedimentation of drops aa a function of the 
radius of the larger drop for a typical hydrosol having Ap = 0.1 em3, kT = 4 x lo-'* erg, and A = 
5 x erg, for h = 0.5 and various viscosity ratios. The daahed line is the result for air bubbles 
in water. 

overcome by van der Waals attraction for collisions to occur, whereas the internal 
flow for drops with low viscosities allows them to collide with relatively small 
resistance and without the aid of an attractive force. 

4.5. Collision eflciencies for typical hydrosols 
In  order for us to gain a better understanding of drop collision processes, the collision 
efficiency as a function of the radius of the larger drop, a,, has been calculated for 
typical hydrosol dispersions, for which values of relative properties are chosen to be 
g = 981 cm/s2, Ap = Ip'-pI = 0.1 g/cm3, A = 5 x erg. 
For this system, Pe = 0.5144 1 - h2)& where a, is in microns, and Q12 = 0.8Pe. Thus, 
Pe > 10 for a, > 3 pm and moderate A, and figure 21 shows the gravitational collision 
efficiency for h = 0.5 as a function of a, and several viscosity ratios for this case. The 

erg, and kT = 4 x 
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collision efficiencies are on the order of 0.1 for moderate sizes and viscosity ratios. 
They decrease as a, increases because the strength of the van der Waals force 
relative to the gravity force, as measured by Q;;, decreases. The dashed line in figure 
21 represents the specific case of air bubbles in water, for which A = 5 x erg, 
Ap = 1.0 g/cm3, and ,& = 0.02. 

When Pe < 0.1, or a, < 1 pm for the system described above, Brownian collisions 
are expected to dominate over gravitational collisions. Since the Brownian collision 
efficiency depends only on A,  I;; and A/GkT, it does not vary with drop size (provided 
that the condition Pe 4 1 is met) and may be determined for any physical system from 
figures 1&14 given earlier. 

5. Conclusions 
Quantitative predictions of the collision rate of two spherical drops undergoing 

Brownian diffusion or gravitational sedimentation are presented in this work. By 
solving the diffusion equation for relative Brownian motion of two drops, and using 
a trajectory analysis to follow the relative motion of pairs of drops in gravitational 
sedimentation, we have developed theoretical models to determine the collision 
efficiencies, both with and without interparticle forces applied between the drops. 
From these models, it is concluded that finite collision rates between non-deforming 
fluid drops are possible for Brownian diffusion or gravitational sedimentation in the 
absence of attractive forces, in stark contrast to the prediction that lubrication forces 
prevent rigid spheres from contacting each other unless an attractive force that 
becomes infinite as the separation approaches zero is applied. Collision rates are 
shown to increase as the viscosity of the drop-phase decreases. This is because the 
squeeze flow of fluid out of the gap separating two approaching drops drives a flow 
inside the drops; the viscous resistance of this internal flow exerted on the external 
squeeze flow decreases as the viscosity of the internal phase relative to that of the 
external phase decreases. In general, hydrodynamic interactions reduce the collision 
rates more for gravitational collisions than for Brownian collisions. 

We conclude with some comments regarding the limitations of the present study. 
One underlying restriction is that the flow in and around the drops is sufficiently slow 
that inertia is small relative to viscous forces. This requires that the Reynolds 
number, Re = pUa/p, be small compared to unity for all phases, where a is the larger 
drop radius and U is its sedimentation velocity. For typical conditions of p = 
0.01 g/cm s, p = 1 g/cm3, Ap = 0.1 g/cm3, and g = lo3 cm/s2, this requires that a < 
50 pm. 

Another restriction is that the drops remain spherical. Yiantsios & Davis (1991) 
have shown that this requires that the modified capillary number, Ca = pUa/ah,, be 
small compared to unity, where a is the interfacial tension and h, is the distance 
separating the drops at the point of nearest contact. For the typical value of a = 
10 dyne/cm, this condition is also met for a < 50 pm, provided that h, > 0.00%. 
However, when the drops become closer than this, the pressure which builds up to 
drive the external fluid out of the gap between them will also cause the interfaces to 
deform by an amount that is comparable to the minimum separation distance. As 
described in detail by Yiantsios & Davis (1991), this deformation will actually 
prevent the surfaces from coming into contact, unless an attractive force is present. 
Fortunately, the separation distance at  which van der Waals attraction becomes 
comparable to the gravity force, h, = (A/GnpU)+, is larger than this for A = 5 x 
erg, provided that a < 100 pm. Thus, we expect our analysis neglecting both inertia 
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and deformation to be reasonable for drops smaller than about 100 pm in diameter 
for many typical systems. 

As mentioned previously, our analysis does not include the presence of interparticle 
repulsive forces. Since such forces between drops are usually associated with 
surfactants on drop interfaces which greatly reduce their mobility, it  is anticipated 
that previous analyses for rigid spheres will provide a reasonable approximation for 
the behaviour of drops with repulsive forces. Finally, our analysis' considers 
Brownian motion and gravity sedimentation independently. Both will be important 
for drops in the micron size range having P e  = O(1). For these, the complete 
convection-diffusion equation (2.1), would need to be solved, with some progress 
possible using perturbation methods. 

This paper is based upon work supported by NASA grant NAG3-993 and by NSF 
grant CTS-8914236. We also thank Dr N. Hill for helpful discussions and Dr A. 
Zinchenko for providing details of his calculations. 
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